Public Key Cryptography III: Rabin \& Elgamal
Rabin Coyptosystem
\rightarrow security of this system is equivalent to difficulty of factoring
\rightarrow essentially RSA with $e=2$.
\rightarrow mainly used tor authentication (signatures)
A. Key Generation

Bob randanly chooses 2 large primes p and q, calculates $n=p q$.
public key $=n$. Private key $=(p, q)$.
B. Encryption

Note: This is MSt RSA with $e=2$ I.
Given message M. Alice ehaypts $C=M^{2} \bmod n$.
C. Decuptich

Bob decrypts C by finding the square not of $C \bmod n$.
\Rightarrow knowing (p, q) makes this easy; otherwise it is as difficult as factoring n.
4 intermediate factors $x_{1}=c^{\frac{p+1}{4}} \bmod p$.

$$
\begin{aligned}
& x_{2}=p-x_{1} \\
& x_{3}=c^{q+1} \bmod q \\
& x_{4}=q-x_{3}
\end{aligned}
$$

We deftive $a=q q^{-1} \bmod p$ and $b=p p^{-1} \bmod q$.
Then, 4 possible plawtexts can be calculated:

$$
\begin{array}{ll}
M_{1}=\left(a x_{1}+b x_{3}\right) \bmod n & M_{3}=\left(a x_{2}+b x_{3}\right) \bmod n \\
M_{2}=\left(a x_{1}+b x_{4}\right) \bmod n & M_{4}=\left(a x_{2}+b x_{4}\right) \bmod n
\end{array}
$$

Example:
Choose $p=7, q=11 \Rightarrow n=7 \times 11=77$
\Rightarrow Public key $=77$, private key $=(7,11)$.
Alice enaypts $M=3: C=3^{2} \bmod 77=9$.
To decrypt, Bob calculates:

$$
\begin{aligned}
& x_{1}=9^{2} \bmod 7=4 \Rightarrow x_{2}=7-4=3 . \\
& x_{3}=9^{3} \bmod 11=(-2)^{3} \bmod 11=-8 \bmod 11=3 \\
& \Rightarrow x_{4}=11-3=8
\end{aligned}
$$

Boy then lids:

$$
\begin{aligned}
& 7^{-1} \bmod 11=8 \Rightarrow 7\left(7^{-1} \bmod 11\right)=56 \\
& 11^{-1} \bmod 7=2 \Rightarrow 11\left(11^{-1} \bmod 7\right)=22 \\
& \text { Let } a=22, b=56 \text {. } \\
& \text { The four possible plaintexts: } \\
& M_{1}=[22(4)+56(3)] \bmod 77=25 \times \\
& M_{2}=[22(4)+56(8)] \bmod 77=74 \times \\
& M_{3}=(22(3)+56(3)] \bmod 77=3 \\
& M_{4}=[22(3)+56(8)] \bmod 77=52>
\end{aligned}
$$

$$
11=1(7)+4 \Rightarrow 4=11-1(7)
$$

$$
7=1(4)+3 \Rightarrow 3=7-1(4)
$$

$$
4=1(3)+1 \Rightarrow 1=4-1(3)
$$

$$
=4-1[7-1(4)]
$$

$$
1=2(4)-1(7)
$$

$$
=2[11-1(7)]-1(7)
$$

$1 \bmod$

Advantages of Rabin's coyptosystem:

+ provable seaurity
+ unless e is small, Rabin's is faster than RSA
\because requires one modular exponentiation
\rightarrow decryption requires roughly same duration as RA

Disadvantages of Rabin's Cryptosystem:

- receiver needs to decade which one of 4 possible plarntexts is the right one 4 can append messages with known pattens (ex. 20 zeros) to allow easier recognition of paintext.

Definition:
Let g be a mimilive rout for \mathbb{F}_{p} and let h be a nonzero element of A_{p}. The Discrete
Loganthm problem (DLP) is the problem of finding an exponent x such that

$$
g^{x} \equiv h(\bmod p) .
$$

The number x is called the discrete logarithm of h to the base g and is denoted by $\log _{g}(h)$.
DL Assumption: There is no efficient algorithm (poynuomial time) to solve DLP.

* widely believed that this assumption holds.

ElGamal coyptosistem:

A. Key Generation
\rightarrow Alice chooses a prime p
and two random numbers g and u, both less than p, where $g \in \mathcal{Z}_{p}{ }^{*}$
\rightarrow Alice calculates $y=g^{u} \bmod p$.
Alice's public key is (p, g, y); her secret key is u

B. Enayption

\rightarrow To enanpt a message M for Alice, Bob chooses random integer k such that $\operatorname{gcd}(k, p-1)=1$.
\rightarrow Bob calculates: $a=g^{k} \bmod p$
$9^{\prime} \bmod 11=9$
$b=y^{k} M \bmod p$.
$9^{2} \bmod 11=4$
cryptogram, $C=(a, b)$. Length of $C=2 \times$ Length of M.
$9^{4} \bmod 11=5$
$9^{6} \bmod 11=(5$
$9^{6} \bmod 11=(5 \times 4) \operatorname{mud} 11$
C. Decryption

$$
=20 \bmod 11=9
$$

\rightarrow To decrypt C. Alice calculates $M=b^{-u} \bmod \operatorname{mon}$

Example

suppose Alice chooses prime $p=11$,

$$
\begin{aligned}
11 & =1(9)+2 \Rightarrow 2=11-1(9) \\
9 & =4(2)+1 \\
\Rightarrow 1 & =9-4(2) \\
& =9-4[11-1(9)] \\
1 & =5(9)-4(11) \\
1 \bmod 11 & \equiv[5(9)-4(11)] \bmod 11 \\
& \equiv 5(9) \bmod 11 \\
\Rightarrow 9^{-1} \bmod 11 & =5
\end{aligned}
$$

generator $g=3$,
and secret key $u=6 . \quad y=3^{6} \bmod 11=3$.
Public key $=(p, g, y)=(11,3,3)$.
To ency $p+M=6$, Bob chooses $K=7$ and calculates
$a=3^{7} \bmod 11=9 \quad b=3^{7}(6) \bmod 11=10$.
\Rightarrow coyptugram, $C=(9,10)$.
To deaypt C, Alice calculates $M=\left(10 / 9^{6}\right) \bmod 11=(10 / 9) \bmod 11=(10 \times 5) \bmod 11=6$

